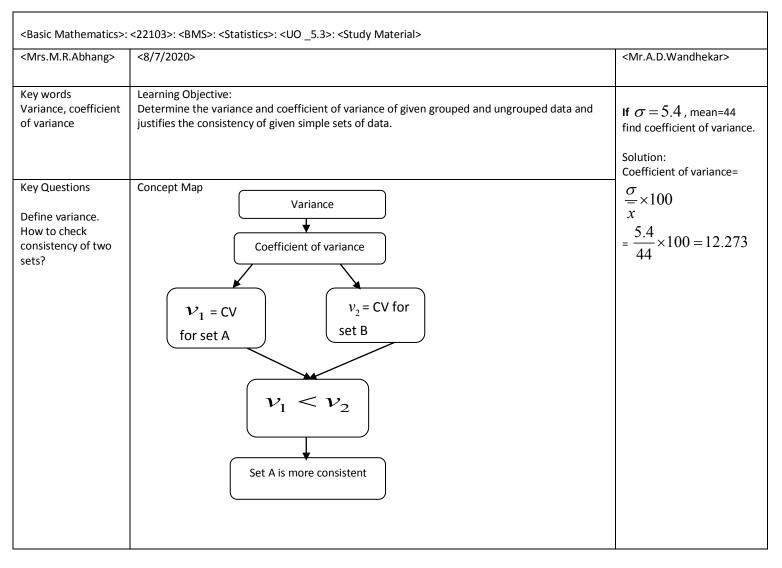


V2V EDTECH LLP


Online Coaching at an Affordable Price.

OUR SERVICES:

- Diploma in All Branches, All Subjects
- Degree in All Branches, All Subjects
- BSCIT/CS
- Professional Courses
- +91 93260 50669
 v2vedtech.com
- V2V EdTech LLPv2vedtech

Template: Study Material

Explanation of Concept Variance

The square of standard deviation is called the variance.

Raw data

Variance =
$$(S.D.)^2 = \sigma^2 = \sum \frac{d_i^2}{N}$$

Coefficient of variance $\frac{S.D.}{Mean} \times 100$

$$=\frac{\sigma}{\bar{x}} \times 100$$

Example:

Find the variance and coefficient of variance of the following data:

Solution:

$$\bar{x} = \frac{\Sigma x_i}{N}$$
$$= \frac{49 + 63 + 46 + 59 + 65 + 52 + 60 + 54}{8}$$
$$\bar{x} = \frac{448}{8}$$

$$\therefore \bar{\mathbf{x}} = 56$$

$$\frac{\mathbf{x}_{i}}{49} - \frac{\mathbf{x}_{i} - \mathbf{x}}{49} - \frac{\mathbf{d}_{i}^{2}}{49} - \frac{\mathbf{d}_{i}^{2}}{100} + \frac{\mathbf{d}_{i}^{2}}{100} +$$

Variance for ungrouped data:

1) Calculate the mean and variance for the data:

X	10	20	30	40	50
f	12	15	17	11	9

Solution :

Key Definitions/ Formulas

Variance= σ^2

Coefficient of variance=

$$\frac{\sigma}{\overline{x}} \times 100$$

Xi	$\mathbf{f}_{\mathbf{i}}$	f _i x _i	$\mathbf{d}_{i} = (\mathbf{x}_{i} - \bar{\mathbf{x}})$	di ²	$f_i d_i^2$
10	12	120	- 18.437	339.92	4079.04
20	15	300	- 8.437	71.182	1067.73
30	17	510	1.563	2.442	41.541
40	11	440	11.563	133.70	1470.7
50	9	450	21.563	464.96	4184.64
	$N = \Sigma f_i = 64$	$\Sigma f_i x_i = 1820$			$\Sigma f_i d_i^2 =$ 10843.65

Mean =
$$\bar{x} = \frac{182}{64}$$

$$\bar{x} = 28.437$$

S.D. =
$$\sigma = \sqrt{\frac{\sum f_i d_i^2}{N}}$$

= $\sqrt{\frac{10843.65}{64}}$

S.D. = $\sigma = 13.016$

Variance =
$$(S.D.)^2$$

= $(13.016)^2$

Variance = 169.416

Variance for grouped data:

1) Find the variance and coefficient of variance of the following data:

C.I.	0-10	10-20	20-30	30-40	40-50
Frequency	14	23	27	21	15

Solution:

Class	fi	Xi	f _i x _i	$\mathbf{d_i} = \mid \mathbf{x_i} - \bar{\mathbf{x}} \mid$	d _i ²	$f_i d_i^2$
0-10	14	5	70	20	400	5600
10-20	23	15	345	10	100	2300
20-30	27	25	675	0	0	0
30-40	21	35	735	10	100	2100
40-50	15	45	675	20	400	6000
	$N = \Sigma f_i$		$\Sigma f_i x_i =$			$\Sigma f_i d_i^2 =$
	= 100		2500			16000

Mean =
$$\bar{x} = \frac{\Sigma f_i x_i}{N} = \frac{2500}{100} = 25$$

S.D. = $\sigma = \sqrt{\frac{\Sigma f_i d_i^2}{N}} = \sqrt{\frac{16000}{100}}$

S.D. = 12.649 Variance = $(S.D.)^2 = \sigma^2 = (12.649)^2$ = 159.997

Variance = 160

Coefficient of variance = $\frac{S.D.}{Mean} \times 100$

$$=\frac{12.649}{25} \times 100$$

= 50.596 %

Solved word Problem	Comparison of Two Sets of Observations:						
An analysis of	Coefficient of variance is the most important relative measure of dispersion .						
monthly wages paid	If two sets of observations are given, to find which set is more consistent, we have to find						
to the workers in two firms A and B is	coefficient of variations. Less is the coefficient of variance the set is more consistent.						
as follows:	Example:						
A B	The data of runs scored by two batsman A and B in five one day matches is given below :						
Avg. 186 175	Batsman Average runs scored S.D.						
S.D. 9 10	A 44 5.1 B 54 6.31						
Which firm is more	State which batsman is more consistent?						
consistent? Solution: Let	Solution: Let v_1 and v_2 be coefficients of variance for batsman A and B.						
v_1 and v_2 be	$v_1 = \frac{\sigma}{x} \times 100$						
coefficient of variations for firms A	Λ						
and B	$=\frac{5.1}{44} \times 100 = 11.59$						
$v_1 = \frac{\sigma}{\overline{x}} \times 100$	$v_2 = \frac{\sigma}{x} \times 100$						
	$=\frac{6.31}{54} \times 100$						
$=\frac{9}{186}\times 100$	$=\frac{1}{54} \times 100$						
=4.839	= 11.68						
	$\therefore v_1 < v_2$						
$v_2 = \frac{\sigma}{\overline{x}} \times 100$: Batsman A is more consistent.						
$=\frac{10}{175}\times 100$							
= 5.714							
$v_1 < v_2$							
\therefore^{1} Firm A is more							
consistent.							

	Application of Concept/ Examples in real life	Link to YouTube/ OER/
	Coefficient of variance is used in engineering for quality control. It is also used in biochemistry,	video
	medical physics, biology, psychology, pathology ,social sciences etc.	https://www.ck12.org/boo
	The coefficient of variation shows the extent of variability of data in a sample in relation to the mean of the data.	k/CK-12-Probability-and- Statistics-
		Concepts/section/5.9/
		concepts/section/5.5/
Key Take away from t	his UO : Variance	1
	Coefficient of variance	
	Consistency of sets	